ADVANCED ENGINEERING NUMERICAL METHODS COMPUTER PROGRAMMING

THEORY AND PRACTICAL

Dipak Kumar Jana • Kalipada Maity

ADVANCED ENGINEERING NUMERICAL METHODS AND COMPUTER PROGRAMMING

THEORY AND PRACTICAL

Dipak Kumar Jana

Assistant Professor in Mathematics
Department of Applied Sciences
Haldia Institute of Technology
Haldia, Purba Medinipur, West Bengal, India

Dr Kalipada Maity

Assistant Professor

Department of Mathematics

Mugheria Gangadhar Mahavidyalaya,

Bhupatinagar, Purba Medinipur, West Bengal, India

UGC 12 th. Plan

Contents

Prefa	ce		vii
Syllal	ous		ix
1	Approximation in Numerical Computation, Errors		
	1.1	Introduction	1
	1.2	Mathematical preliminaries	1
	1.3	Approximation in Numerical Computation	2
	1.4	Floating-Point Form of Numbers	3
	1.5	Approximate Numbers, Rounding-off Numbers and Significant	
		Figures	4
		1.5.1 Approximate numbers	4
		1.5.2 Round off of a number	4
		1.5.3 Significant figures	4
	1.6	Several Type of Errors	6
		1.6.1 Iteration error	6
		1.6.2 Approximation error	6
		1.6.3 Inherent errors and rounding-off errors	6
		1.6.4 Truncation error	7
	1.7	Errors and their Computation	7
	1.8	Application of Error Formula	10
	1.9	Error in Evaluation of a Function of Several Variables	11
	1.10	Error in a Series Approximation	12
	1.11	Uncertainty in Data or Noise	13
	1.12	Significant Error	13
	1.13	Multiple Choice Questions (MCQ)	19
2	Calc	ulus of Finite Difference	23
	2.1	Forward Difference	23
	2.2	Backward Difference	25
	2.3	Relation between Forward and Backward Differences	26
	2.4	Other Symbolic Operator and their Relations	27
	2.5	Properties of Forward Difference Operator Δ	27
	2.6	Properties of Shift Operator E	27
	2.7	Newton-Gregory Formula	28
	2.8	Evaluation of Missing Term in the Given Datas	28
	2.9	Factorial Notation	29

		D CT D'M TIL	0.0
	2.10	Propagation of Errors in a Difference Table	29
	2.11	Divided Differences Multiple Choice Questions (MCQ)	30 41
	2.12	Multiple Choice Questions (MCQ)	41
3	Inter	polation	45
	3.1	Interpolation	45
		3.1.1 Introduction	45
		3.1.2 Difference between interpolation and extrapolation	46
		3.1.3 Weirstrass approximation theorem	46
	3.2	Theorem of Polynomial Interpolation	47
	3.3	Lagrange's Interpolation	47
		3.3.1 Lagrange's interpolation formula for equally spaced	
		points	48
		3.3.2 Uniqueness of Lagrange's interpolating polynomial	48
		3.3.3 The error in the Lagrange's interpolating	40
	0. /	polynomial/error of interpolating polynomial	48
	3.4	Newton's Interpolation	51
		3.4.1 Newton's forward difference interpolation formula	51
	0.7	3.4.2 Newton's backward interpolation	54
	3.5	Divided Differences Formula	56
		3.5.1 Properties of divided difference	57
		3.5.2 Divided difference for equispaced arguments 3.5.3 Confluent divided differences	58 58
			59
		3.5.4 Deduction of some important formula	09
		3.5.5 Newton's fundamental interpolation formula by divided difference formula	60
		3.5.6 Newton's divided difference interpolation formula	61
		3.5.7 Taylor's Theorem	62
		3.5.8 Newton divided to Newton's forward formula	63
		3.5.9 Newton divided to Newton's backward formula	63
	3.6	Gauss's Central Difference Interpolation	64
	0.0	3.6.1 Gauss forward difference interpolation for odd $(2n+1)$	
		equispaced arguments	64
		3.6.2 Gauss forward difference interpolation for even	
		(2n) equispaced arguments	65
		3.6.3 Gauss backward difference interpolation for odd	
		(2n+1) equispaced arguments	66
		3.6.4 Gauss backward difference interpolation for even $(2n)$	
		equispaced arguments	66
		3.6.5 Stirling's interpolation formula	67
	3.7	Interpolation by Iteration (Aitken's Interpolation)	68
	3.8	Multiple Choice Questions (MCQ)	76
4	Inve	erse Interpolation	81
1	4.1	Inverse Interpolation	81
	4.1	4.1.1 Inverse interpolation based on Lagrange's	
		interpolation formula for unequally spaced points	83
		4.1.2 Inverse interpolation based on Newton's forward	
		difference interpolation formula	84
		*	

		4.1.3	Inverse interpolation based on Newton's backward	
			difference interpolation formula	84
		4.1.4	Inverse interpolation for odd $(2n + 1)$ equispaced	
			arguments based on Gauss's forward difference	85
		115	interpolation formula Inverse interpolation for even $2n$ equispaced arguments	00
		4.1.5	based on Gauss's forward difference interpolation	
			formula	86
	4.2	Inverse	Interpolation Formula using Divided Difference	
	4.2		olation Formula	86
	4.3		ation of the Inverse Interpolation Formula to Find a	
	210		f a Equation	87
	4.4		le Choice Questions (MCQ)	90
5	Num	erical I	Differentiation	93
	5.1	Introdu		93
	5.2		n Numerical Differentiation Formula	93
		5.2.1	Differentiation based on Lagrange's interpolation	
			polynomial	94
		5.2.2	Differentiation based on Newton's forward interpola-	
			tion polynomial	96
		5.2.3	Differentiation based on Newton's backward interpo-	
			lation polynomial	98
	5.3	Differe	ntiation Formula Based on Newton's Divided Difference	
		Polyno		99
	5.4		ntiation Formula Based on Taylor's Theorem	101
	5.5	Multip	le Choice Questions (MCQ)	105
6	Num	nerical I	ntegration	109
	6.1	Introdu	uction	109
		6.1.1	0 1	110
	6.2		al or Gauss-Legendre Quadrature For-	
			Closed Type)	110
		6.2.1	Dependent on Newton's forward difference	440
			interpolating polynomial	110
		6.2.2	Derivation of trapezoidal rule	111
		6.2.3		112
		6.2.4	Simpson's 1/3 rule	113
		6.2.5	Composite simpson's 1/3 rule	114
		6.2.6	Newton-cotes' closed type numerical integration	115
		607	formula Transpaidal rule from Newton Cotes formula	117
		6.2.7	Trapezoidal rule from Newton-Cotes, formula Simpson's 1/3 rule from Newton-Cotes, formula	117
		6.2.8 6.2.9	Simpson's 3/8 rule from Newton–Cotes, formula	118
		6.2.10	Weddle's rule from Newton-Cotes, formula	118
		6.2.11	Geometrical interpretation of trapezoidal rule	119
		6.2.12	Geometrical interpretation of Simpson's 1/3 rule	119
		6.2.13	Legendre—gauss quadrature formula	120
		6.2.14	Euler-Maclaurin sum formula	120

XVI	Cor	ston	te
A V I	COL	10011	いい

	6.3	Double Integration	121
		6.3.1 Trapezoidal rule	121
		6.3.2 Simpson's 1/3 rule	121
	6.4	Summary of Numerical Integration	122
	6.5	Multiple Choice Questions (MCQ)	130
7		tion of Transcendental Equations	135
	7.1	Introduction	135
	7.2	Method of Fixed-Point Iteration or Successive Approximation	137
		7.2.1 Order of convergence	137
		7.2.2 Advantage of fixed-point iteration method	139
	7.0	7.2.3 Disadvantage of iterative method	139
	7.3	Ramanujan's Method	139
	7.4	Bisection Method	141
		7.4.1 Computation scheme 7.4.2 Convergence of bisection method	142
			143
			146
	7.5	7.4.4 Disadvantages of bisection method Newton-Raphson's Method	146
	0.1	7.5.1 Computational procedure	146
		7.5.2 Derivation of N-R method from geometry	147
		7.5.3 Geometrical interpretation of N-R method	147
		7.5.4 Condition of convergency of N-R method	148 149
		7.5.5 Rate of convergency of N-R method	
		7.5.6 Advantages and disadvantages of N-R method	149
		7.5.7 Generalised Newton's method for multiple roots	150
		7.5.8 Newton-Raphson's method for simultaneous equation	154
	7.6	Secant Method	155 157
	7.0	7.6.1 Derivation of secant method from Newton-Raphson's	101
		method	158
		7.6.2 Summary	160
	7.7	False Position (Regula Falsi)	160
		7.7.1 Computation scheme	161
		7.7.2 Convergence of Regula-Falsi method	161
		7.7.3 Advantages and disadvantages of Regula Falsi method	162
		7.7.4 Summary of numerical methods	164
	7.8	Multiple Choice Questions (MCQ)	164
8	Solut	ion of System of Linear Equations	169
	8.1	Introduction	
	8.2	Direct Method	169
	0.2	8.2.1 Gauss elimination method	170
		8.2.2 Gauss–Jordan elimination method	170
			175
		8.2.3 Number of arithmetic operations 8.2.4 LU factorization	178
	8.3	Indirect/Iterative Method	178
	0.0	8.3.1 Jordan iterative method	184 184
		8.3.2 Gauss—Seidel iterative method	186
	8.4	Multiple Choice Questions (MCQ)	193
		The Control of Montrol (Tri Cold)	100

		Contents	xvii
9	Num	erical Solution of Differential Equations	195
	9.1	Introduction	195
	9.2	Single Step Predictor-corrector Method	196
	3.2	9.2.1 Euler method(Predictor method)	196
		9.2.2 Alternative method	198
		9.2.3 Euler's modified method(Euler-Cauchy corrector	
		method)	199
		9.2.4 Runge-Kutta methods(Predictor-corrector method)	200
	9.3	Milne's Predictor-Corrector Method	203
		9.3.1 Computational scheme of Milne's Predictor-	206
		corrector method	206
		9.3.2 Predictor and corrector method	206
	9.4	Picards method	210 211
	9.5	Taylors Series Method	216
	9.6	Multiple Choice Questions (MCQ)	210
10	Leas	st Squares Approximation	219
	10.1	Approximation	219
	10.2	Least Squares Approximation	220
	10.3	Linear Curve Fitting or Fitting a Straight Line for Discrete Data	221
	10.4	Linear Polynomial Approximation for Continuous Function	222
	10.5	Least Squares Curve Fitting of M-th Degree Polynomial	223
		10.5.1 For discrete data	223
		10.5.2 For Continuous Function	224
	10.6	Multiple Choice Questions (MCQ)	229
11	Orth	ogonal Polynomials	233
	11.1	Orthogonal Polynomials	233
	11.2	Gram-Schmidt Orthogonalisation Process	235
	11.3	Legendre's Polynomials	237
	11.4	Chebyshev Polynomials	238
	11.5	The Chebyshev Polynomials $T_n(x)$ Possess the Following	
		Properties	240
	11.6	Multiple Choice Questions (MCQ)	243
12	C Pr	rogramming	245
	12.1	Interpolation	245
		12.1.1 Newton forward	246
		12.1.2 Newton backward	247
		12.1.3 Lagrange's interpolation	249
	12.2	Numerical Integration	250
		12.2.1 Trapezoidal rule	250
		12.2.2 Simpson's 1/3 rule	250
		12.2.3 Weddle's rule	251
	12.3	Solution of a System of Linear Equations	252
		12.3.1 Gauss elimination	252
		12.3.2 Gauss–Seidel iterations	253
	12.4	Assignments on Numerical Solution of Algebraic Equation	255

xviii Contents

		12.4.1 Newton-Raphson method	255
		12.4.2 Regular-falsi	255
		12.4.3 Bisection	256
		12.4.4 Secant	257
	12.5	Assignments on Ordinary Differential Equation	258
		12.5.1 Euler's methods	258
		12.5.2 Euler's modified methods	258
		12.5.3 Runga-Kutta methods	259
	12.6	Multiple Choice Questions (MCQ)	260
13	13 MATLAB		263
	13.1	Introduction	263
	13.2	Advantages of MATLAB	263
	13.3	Multidimensional Arrays	264
	13.4	Simple Calculations with MATLAB	264
	13.5	Matrix Algebra	265
	13.6	Graphics	266
WBUT QUESTION Paper		269	
Bibliography		275	
Index		277	